babi_memnn
Trains a memory network on the bAbI dataset.
References:
Jason Weston, Antoine Bordes, Sumit Chopra, Tomas Mikolov, Alexander M. Rush, “Towards AI-Complete Question Answering: A Set of Prerequisite Toy Tasks”, http://arxiv.org/abs/1502.05698
Sainbayar Sukhbaatar, Arthur Szlam, Jason Weston, Rob Fergus, “End-To-End Memory Networks”, http://arxiv.org/abs/1503.08895
Reaches 98.6% accuracy on task ‘single_supporting_fact_10k’ after 120 epochs. Time per epoch: 3s on CPU (core i7).
library(keras)
library(readr)
library(stringr)
library(purrr)
library(tibble)
library(dplyr)
# Function definition -----------------------------------------------------
tokenize_words <- function(x){
x <- x %>%
str_replace_all('([[:punct:]]+)', ' \\1') %>%
str_split(' ') %>%
unlist()
x[x != ""]
}
parse_stories <- function(lines, only_supporting = FALSE){
lines <- lines %>%
str_split(" ", n = 2) %>%
map_df(~tibble(nid = as.integer(.x[[1]]), line = .x[[2]]))
lines <- lines %>%
mutate(
split = map(line, ~str_split(.x, "\t")[[1]]),
q = map_chr(split, ~.x[1]),
a = map_chr(split, ~.x[2]),
supporting = map(split, ~.x[3] %>% str_split(" ") %>% unlist() %>% as.integer()),
story_id = c(0, cumsum(nid[-nrow(.)] > nid[-1]))
) %>%
select(-split)
stories <- lines %>%
filter(is.na(a)) %>%
select(nid_story = nid, story_id, story = q)
questions <- lines %>%
filter(!is.na(a)) %>%
select(-line) %>%
left_join(stories, by = "story_id") %>%
filter(nid_story < nid)
if(only_supporting){
questions <- questions %>%
filter(map2_lgl(nid_story, supporting, ~.x %in% .y))
}
questions %>%
group_by(story_id, nid, question = q, answer = a) %>%
summarise(story = paste(story, collapse = " ")) %>%
ungroup() %>%
mutate(
question = map(question, ~tokenize_words(.x)),
story = map(story, ~tokenize_words(.x)),
id = row_number()
) %>%
select(id, question, answer, story)
}
vectorize_stories <- function(data, vocab, story_maxlen, query_maxlen){
questions <- map(data$question, function(x){
map_int(x, ~which(.x == vocab))
})
stories <- map(data$story, function(x){
map_int(x, ~which(.x == vocab))
})
# "" represents padding
answers <- sapply(c("", vocab), function(x){
as.integer(x == data$answer)
})
list(
questions = pad_sequences(questions, maxlen = query_maxlen),
stories = pad_sequences(stories, maxlen = story_maxlen),
answers = answers
)
}
# Parameters --------------------------------------------------------------
challenges <- list(
# QA1 with 10,000 samples
single_supporting_fact_10k = "%stasks_1-20_v1-2/en-10k/qa1_single-supporting-fact_%s.txt",
# QA2 with 10,000 samples
two_supporting_facts_10k = "%stasks_1-20_v1-2/en-10k/qa2_two-supporting-facts_%s.txt"
)
challenge_type <- "single_supporting_fact_10k"
challenge <- challenges[[challenge_type]]
max_length <- 999999
# Data Preparation --------------------------------------------------------
# Download data
path <- get_file(
fname = "babi-tasks-v1-2.tar.gz",
origin = "https://s3.amazonaws.com/text-datasets/babi_tasks_1-20_v1-2.tar.gz"
)
untar(path, exdir = str_replace(path, fixed(".tar.gz"), "/"))
path <- str_replace(path, fixed(".tar.gz"), "/")
# Reading training and test data
train <- read_lines(sprintf(challenge, path, "train")) %>%
parse_stories() %>%
filter(map_int(story, ~length(.x)) <= max_length)
test <- read_lines(sprintf(challenge, path, "test")) %>%
parse_stories() %>%
filter(map_int(story, ~length(.x)) <= max_length)
# Extract the vocabulary
all_data <- bind_rows(train, test)
vocab <- c(unlist(all_data$question), all_data$answer,
unlist(all_data$story)) %>%
unique() %>%
sort()
# Reserve 0 for masking via pad_sequences
vocab_size <- length(vocab) + 1
story_maxlen <- map_int(all_data$story, ~length(.x)) %>% max()
query_maxlen <- map_int(all_data$question, ~length(.x)) %>% max()
# Vectorized versions of training and test sets
train_vec <- vectorize_stories(train, vocab, story_maxlen, query_maxlen)
test_vec <- vectorize_stories(test, vocab, story_maxlen, query_maxlen)
# Defining the model ------------------------------------------------------
# Placeholders
sequence <- layer_input(shape = c(story_maxlen))
question <- layer_input(shape = c(query_maxlen))
# Encoders
# Embed the input sequence into a sequence of vectors
sequence_encoder_m <- keras_model_sequential()
sequence_encoder_m %>%
layer_embedding(input_dim = vocab_size, output_dim = 64) %>%
layer_dropout(rate = 0.3)
# output: (samples, story_maxlen, embedding_dim)
# Embed the input into a sequence of vectors of size query_maxlen
sequence_encoder_c <- keras_model_sequential()
sequence_encoder_c %>%
layer_embedding(input_dim = vocab_size, output = query_maxlen) %>%
layer_dropout(rate = 0.3)
# output: (samples, story_maxlen, query_maxlen)
# Embed the question into a sequence of vectors
question_encoder <- keras_model_sequential()
question_encoder %>%
layer_embedding(input_dim = vocab_size, output_dim = 64,
input_length = query_maxlen) %>%
layer_dropout(rate = 0.3)
# output: (samples, query_maxlen, embedding_dim)
# Encode input sequence and questions (which are indices)
# to sequences of dense vectors
sequence_encoded_m <- sequence_encoder_m(sequence)
sequence_encoded_c <- sequence_encoder_c(sequence)
question_encoded <- question_encoder(question)
# Compute a 'match' between the first input vector sequence
# and the question vector sequence
# shape: `(samples, story_maxlen, query_maxlen)`
match <- list(sequence_encoded_m, question_encoded) %>%
layer_dot(axes = c(2,2)) %>%
layer_activation("softmax")
# Add the match matrix with the second input vector sequence
response <- list(match, sequence_encoded_c) %>%
layer_add() %>%
layer_permute(c(2,1))
# Concatenate the match matrix with the question vector sequence
answer <- list(response, question_encoded) %>%
layer_concatenate() %>%
# The original paper uses a matrix multiplication for this reduction step.
# We choose to use an RNN instead.
layer_lstm(32) %>%
# One regularization layer -- more would probably be needed.
layer_dropout(rate = 0.3) %>%
layer_dense(vocab_size) %>%
# We output a probability distribution over the vocabulary
layer_activation("softmax")
# Build the final model
model <- keras_model(inputs = list(sequence, question), answer)
model %>% compile(
optimizer = "rmsprop",
loss = "categorical_crossentropy",
metrics = "accuracy"
)
# Training ----------------------------------------------------------------
model %>% fit(
x = list(train_vec$stories, train_vec$questions),
y = train_vec$answers,
batch_size = 32,
epochs = 120,
validation_data = list(list(test_vec$stories, test_vec$questions), test_vec$answers)
)