imdb_bidirectional_lstm
Train a Bidirectional LSTM on the IMDB sentiment classification task.
Output after 4 epochs on CPU: ~0.8146 Time per epoch on CPU (Core i7): ~150s.
library(keras)
# Define maximum number of input features
max_features <- 20000
# Cut texts after this number of words
# (among top max_features most common words)
maxlen <- 100
batch_size <- 32
# Load imdb dataset
cat('Loading data...\n')
imdb <- dataset_imdb(num_words = max_features)
# Define training and test sets
x_train <- imdb$train$x
y_train <- imdb$train$y
x_test <- imdb$test$x
y_test <- imdb$test$y
# Output lengths of testing and training sets
cat(length(x_train), 'train sequences\n')
cat(length(x_test), 'test sequences\n')
cat('Pad sequences (samples x time)\n')
# Pad training and test inputs
x_train <- pad_sequences(x_train, maxlen = maxlen)
x_test <- pad_sequences(x_test, maxlen = maxlen)
# Output dimensions of training and test inputs
cat('x_train shape:', dim(x_train), '\n')
cat('x_test shape:', dim(x_test), '\n')
# Initialize model
model <- keras_model_sequential()
model %>%
# Creates dense embedding layer; outputs 3D tensor
# with shape (batch_size, sequence_length, output_dim)
layer_embedding(input_dim = max_features,
output_dim = 128,
input_length = maxlen) %>%
bidirectional(layer_lstm(units = 64)) %>%
layer_dropout(rate = 0.5) %>%
layer_dense(units = 1, activation = 'sigmoid')
# Try using different optimizers and different optimizer configs
model %>% compile(
loss = 'binary_crossentropy',
optimizer = 'adam',
metrics = c('accuracy')
)
# Train model over four epochs
cat('Train...\n')
model %>% fit(
x_train, y_train,
batch_size = batch_size,
epochs = 4,
validation_data = list(x_test, y_test)
)